
Compiler Developments
at Apple
Session 907

Compiler Developments
at Apple

John Graziano
Engineering Manager,

Mac OS X Compiler Group

What We Will Cover
•GCC 3.1

• New features
• Converting projects

•Code Quality
•Compile Time

Gnu C Compiler
•Free software
•Supports ANSI C, C++ and Objective-C
•Robust C++ implementation
•Many, many years of work and testing
•“Reference” compiler for many developers
•Compiles all of Mac OS X

Latest Work in GCC 2.95
•Default compiler on 10.1.x
•Improvements to code generation

• Code quality
• Memory footprint

•Objective-C++
•Two-level Namespace

GCC 3.1

The Latest Mac OS X Compiler

New Features in GCC 3.1
•C99 Compliance
•C++ ANSI Compliance
•Integrated Preprocessor
•More and better optimizations
•C++ ABI Changes!

Apple Additions to GCC 3.1
•Improved PPC Code Generation
•New Precompiled Headers (C++!)
•Objective-C++
•Mach-O Support

WAITWAIT

Caution
•Wait for Jaguar GM to ship product on GCC 3.1

• Beta, beta, beta

Objective-C++
•Combines C++ and Objective-C
•Allows integration of C++ code

with Cocoa applications
•New file extension: .mm

• Legacy extension .M still supported
(but discouraged)

Mixing C++ and ObjC Code
•ObjC declarations (e.g., id foo, NSObject *bar)

can be intermixed with C++

•ObjC objects may point to C++ objects
(and vice versa)

•ObjC message sends (e.g., [myObj foo]) can be
intermixed with C++ expressions

ObjC++ Restrictions
•Object hierarchies cannot mix
•C++ classes cannot receive ObjC messages

(or vice versa)
•Cannot statically allocate, new or delete ObjC objects

Objective-C++ Is For Real!
•Available in GCC 2.95 and 3.1
•Already in use on shipping applications

Code Generation

Measuring Code Quality
•Real-world code
•Benchmarks
•Test against other compilers

• CodeWarrior
• MrC
• GCC 2.95

Real-World Code
•Large components of Mac OS X
•Measures larger factors than benchmarks

• Memory usage
• System interaction

Real-World Code: Examples
•QuickTime
•iTunes
•Mach Kernel
•Quartz and OpenGL
•Java VM

What Exactly Is a “Benchmark”?
•Collection of CPU-intensive routines
•Built for multiple platforms by

multiple compilers
•Each test targets subset of compiler codegen
•Great yardstick for measuring basic optimization

Benchmarks We Use
•CPU 2000 (SPECMarks)

• Large tests of system software
•ByteMarks

• Obsolete, easily manipulated
•SkidMarks (Apple Internal)

SkidMarks Overview
•Developed by Apple’s hardware group
•Real-world Macintosh code examples
•Smaller tests, focused on CPU usage
•3 categories of tests

• Integer
• Floating Point
• AltiVec™

SkidMarks Integer Tests
•MPEG

• Open Source MPEG2 encoder
•PixBlend

• Pixel blender used in Final Cut Pro and iDVD
•Ellipticrypt

• Elliptical encryption routine
•Rijndael

• NIST encryption algorithm

SkidMarks Floating Point Tests
•Q3

• Quake3 math routine
•FFT

• Fast Fourier transform
•VolInt

• Volume integration of cubic region

SkidMarks AltiVec™ Tests
•Galaxy

• Gravity calculation
•IDCT

• Inverse Discreet Cosine Transform
(QuickTime)

•BigMult
• Multiplication of 4096-bit numbers

GCC 2.95: Integer*

0 100 200 300

MrC

CW7

GCC 2.95

+5 %

+33 %

*Smaller is better

GCC 2.95: Floating Point

0 50 100 150

MrC

CW7

GCC 2.95

+18 %

+12 %

GCC 2.95: AltiVec™

0 50 100 150 200

MrC

CW7

GCC 2.95

+19 %

+15 %

GCC 2.95: Overall

0 50 100 150 200 250

MrC

CW7

GCC 2.95

+13 %

+21 %

Codegen “Opportunities”

•NullStones
• Identifies missing optimizations

•Head-to-head comparisons
• Build identical code with several compilers

•Assembly inspection
•Compiler source code inspection

Codegen in GCC 3.1
•Forward inliner
•Dynamic, non-pic function calls

• Removes library call indirection for executables
• Saves 2 loads per call

•AltiVec™ and FP optimizations
•Continued incremental improvement

GCC 3.1: Integer

0 100 200 300

MrC

CW7

GCC 2.95

GCC 3.1

-22 %

+4 %

-28 %

GCC 3.1: Floating Point

0 50 100 150

MrC

CW7

GCC 2.95

GCC 3.1

-1 %

-7 %

-20 %

GCC 3.1: AltiVec™

0 50 100 150 200

MrC

CW7

GCC 2.95

GCC 3.1

-8 %

-11 %

-28 %

GCC 3.1: Overall

0 50 100 150 200 250

GCC 2.95

MrC

CW7

GCC 3.1

-11 %

-4 %

-25 %

Codegen and You…
•Optimize your code!!

• Recommend -Os for all projects
•Measure, measure, measure…

• Optimal settings depend on code

-Os: Optimize for Size
•Produces smallest binary size

•Performance roughly equivalent to -O2
• No loop unrolling
• No scheduling, register renaming
• Limited inlining (only with inline keyword)

-mdynamic-no-pic
•New for GCC 3.1
•Generates indirect, non-position-independent

function calls
• Reduces code size by 10%
• Increases code performance by 10%

•Default setting for PB Applications, Tools

Use only on executables

-O3 and Inlining
• -O3 turns on automatic inlining

• Including forward inlining
• -O3 inlines using internal criteria

• inline keyword only a hint
• Use -finline-limit to set size of

inlined functions

•Aggressive inlining can seriously bloat code

Build Time

C++ Build Time

25:40

0:41

0 5 10 15 20 25 30

CW7

gcc3

Where Does the Time Go?

0 10 20 30

gcc3

Overhead Headers Source

Codegen Assembler Linker

The Cost of Header Parsing
•I/0

• Reading files
• Searching

•Preprocessing
•Parsing Declarations

• CPU usage
• Memory allocation

•100,000 lines of declarations in Carbon alone!

What about cpp-precomp?
•GCC 2.95 precomp mechanism
•Stores all headers in tokenized form
•Selectively unparses referenced declarations
•Good PB support
 But…
•Cannot contain C++

Persistent Front End
•Saves entire front end state to disk

• File mapped in at known address
•Supports all C flavors

• C, Objective-C, C++ Objective-C++

C++ Build Time–Progress

25:40

4:21

0:41

0 5 10 15 20 25 30

CW7

PFE

gcc3

Compile Time Improvement

Up to 6x faster with GCC 3.1
and the

Persistent Front End

PFE Today
•Header process speed increased 8-10x
•Full support of C, C++, ObjC, ObjC++
•Overall build speed increased as much as 6x

Moving to GCC 3.1

Changes
•New STL and libstdc++

• iterators, exceptions
•Stricter ANSI compliance
•Better error checking
•New C++ ABI

New C++ ABI
Problem:

Link fails with many undefined symbols
Cause:

C++ library not recompiled with GCC 3.1
Fix:

Rebuild all dependent modules with GCC 3.1

Namespaces
Problem:

Compile fails with symbol sym not in scope

Cause:
All C++ library classes are now in
namespace std

Fix:
Prefix symbol references with std:: or add a
using std directive

STL Changes
Problem:

Looser throw specifier…

Cause:
exception now defines an empty throw specifier
for some methods

Fix:
Add empty throw specifiers to proper methods

Linking With libstdc++
Problem:

Link fails with strange undefineds like
_gxx_personality

Cause:
GCC now requires an explicit link against
libstdc++

Fix:
Use c++ command

Other Issues
•Type Agreement strictly enforced

Use casts
• cpp-precomp doesn’t like the new STL

Use PFE
• c++ recognizes operator names

(and, not_eq, etc)
Add -fno-operator-names

The Bottom Line
•C++ projects will require some code changes
•C and Objective-C should Just Work™

Still to Come in Jaguar
•Full sync with GCC 3.1 release
•Further codegen improvements

• Speed
• Size (esp. C++)

•PFE Tuning
•Great PFE support in Project Builder

GCC 3.1
•Better C++ Compliance
•Improved Code Quality
•Faster Compile Time

Use it now, ship with it for Jaguar

Technical Documentation
• /Developer/Documentation/DevTools

• Compiler
• Preprocessor
• gdb
• MachORuntime

Roadmap

Room J1
Fri., 3:30pm

Room J1
Fri., 3:30pm

FF015 Development Tools:
Make your thoughts known

Hall 2
Fri., 5:00pm

Hall 2
Fri., 5:00pm

909 Debugging in Mac OS X:
Learn about gdb and debugging techniques

Hall 2
Fri., 2:00pm

Hall 2
Fri., 2:00pm

908 Delivering with Project Builder:
Hear about in-depth techniques

Who to Contact
Godfrey DiGiorgi
Technology Manager, Development Tools
ramarren@apple.com

Development Tools Engineering Feedback
macosx-tools-feedback@group.apple.com

Bug Reporting
http://developer.apple.com/bugreporter/

http://developer.apple.com/wwdc2002/urls.html

Q&A

Godfrey DiGiorgi
Technology Manager, Development Tools

ramarren@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

